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Abstract

In this research we focused on the development of cooperative guidance strategies for a

team composed of a manned or unmanned aircraft and a defending missile trying to protect

the aircraft from the incoming homing interceptor. We have also looked at the problem from

the point of view of the missile and have analyzed the problem as a game between two teams,

the target-defender team and that of the missile.

The research has been conducted in three years. The main findings of the study in the

first year appear in that year’s annual report and can be summarized as follows:

• Knowing the evasive maneuver of the aircraft substantially reduces the control effort

requirements from its defending missile. Choosing an appropriate target (aircraft)

maneuver further reduces the defending missile control effort. The cooperation also

dramatically improves the defender’s homing performance, especially in scenarios where

the target aircraft employs evading maneuvers.

• Fusion of measurements between the aircraft and defending missile enables fast iden-

tification of the missile’s guidance strategy, making its future trajectory predictable.

Moreover, in cases where the defending missile has bearing only measurements, the

cooperation with the aircraft enables estimating also range and thus advanced cooper-

ative optimal control based guidance laws can be utilized.

• Command to line of sight (CLOS) guidance for the defender missile provides superior

performance over proportional navigation (PN) guidance in terms of the miss distance

and the total control effort.

The main findings of the study in the second year appear in that year’s annual report and

can be summarized as follows:

• optimal one-on-one, non-cooperative, aircraft evasion strategies from a missile using

a classical linear guidance strategy were derived. The strategies have a bang-bang

structure. For realistic parameters, utilizing such optimal strategies yields a small

miss distance that is not sufficient for ensuring aircraft survivability. Thus, the use of

a defender missile is of essence.

• In contrast to the optimal one-on-one evasion strategy, the optimal cooperative target

maneuver may be either constant or arbitrary. Implementing such a strategy the target

can lure in the attacker, allowing its defender to intercept the attacking missile even

in scenarios where the defenders maneuverability is at a disadvantage compared to the

attacking missile, yielding hit-to-kill homing performance.
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• Analytical capture envelopes were derived for scenarios where the missile and the de-

fender use different classical guidance laws, such as PN, pure pursuit (PP), and CLOS.

In the third year of the research we first looked at the problem as a game between two teams

(the target-defender team and that of the missile). Then we looked into the effect of different

cooperation/communication schemes on the performance of the target-defender team. The

main findings of the study in the third year of the research are:

• For a given missile strategy (e.g. PN and PP) the mission outcome relies heavily on

the defender guidance strategy (e.g. PN and CLOS guidance), and vice versa. Thus,

for a realistic implementation of a guidance law, from a given set of laws, a game

theoretic analysis is required. Formalizing the engagement as a two-person zero sum

game, optimal strategies are obtained not only in pure strategies but also in mixed

strategies (i.e. a probabilistic distribution over the set of pure strategies).

• Three different cooperation schemes were investigated: 1) two-way cooperation where

the target-defender team employs its optimal cooperative strategy, 2) one-way coop-

eration realized by defender employing a classical one-on-one guidance law while the

target helps it by luring in the missile, 3) one-way cooperation realized by target em-

ploying an arbitrary evasive strategy while the defender attempts to reach the predicted

interception point. Using the notion of Pareto fronts it is shown that the performance

of the target and the defender is highly dependent on the cooperation scheme, where as

expected the two-way cooperation scheme provides the best performance. Yet, one-way

cooperation schemes attain considerably better results than independent actions.

• Once two-way communication cannot be established and full cooperation is not possible

one player of the target-defender team must act independently. In such a case it is

still possible to intercept a homing missile using an appropriate cooperation scheme.

Different one-way cooperation schemes impose different maneuvering requirements on

the respective cooperatively acting players. Results have shown that cooperatively

acting defender is more effective than cooperatively acting target, since cooperative

defender only needs to turn towards predicted intercept point, while cooperative target

has to take into account missile reaction to its maneuver to bring the independent

defender to interception point.
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The results of the research have appeared in 3 published and 1 accepted journal publications,

see:

• Shaferman, V. and Shima, T., “Cooperative Multiple Model Adaptive Guidance for

an Aircraft Defending Missile”, AIAA Journal of Guidance, Control, and Dynamics,

Vol. 33, No. 6, 2010, pp. 1801-1813, DOI: 10.2514/1.49515.

• Shima, T., “Optimal Cooperative Pursuit and Evasion Strategies Against a Homing

Missile”, AIAA Journal of Guidance, Control, and Dynamics, Vol. 34, No. 2, 2011,

pp. 414-425, DOI: 10.2514/1.51765

• Ratnoo, A. and Shima, T. “Line-of-Sight Interceptor Guidance for Defending an Air-

craft”, AIAA Journal of Guidance, Control, and Dynamics, Vol. 34, No. 2, 2011, pp.

522-532, DOI: 10.2514/1.50572

• Ratnoo, A. and Shima, T., “Guidance Laws Against a Defender-Evader Team”, AIAA

Journal of Guidance, Control, and Dynamics, to appear in 2012.

The last part of the research, presented in depth in this report, has been accepted for

conference presentation:

• Prokopov, O. and Shima, T., “Linear Quadratic Optimal Cooperative Strategies for

Active Aircraft Protection”, AIAA Guidance, Navigation, and Control Conference,

Minneapolis, Minnesota, August, 2012.

and has also been recently submitted to the AIAA Journal of Guidance, Control, and Dy-

namics.
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I. Introduction

Traditional interception engagements are concerned with a single missile chasing a sin-

gle target. The classical and most widely used approach in the solution of such guidance

problems assumes perfect information, linearized kinematics,1 and applies optimal control

theory tools. The well-known proportional navigation (PN) guidance law2 represents the op-

timal solution for the simplest scenario where interceptor has ideal dynamics and the target

does not maneuver. Augmented proportional navigation (APN)3 represents expanded opti-

mal solution for the scenario where a target performs a known constant maneuver. Further

extension of APN is an optimal guidance law (OGL)4 where an additional assumption is

that the interceptor has first order dynamics. In Ref. 5 two one-on-one guidance laws were

proposed for imposing a terminal interception angle. These strategies were derived using

linear quadratic optimal control and differential games approaches for arbitrary order linear

missile dynamics.

In order to answer the threat coming from homing missiles employing such guidance

laws, a significant effort was made on extending protection capabilities of targeted aircrafts.

Among the systems developed for this purpose are electronic countermeasures and various

kinds of decoys. Besides these means of protection an aircraft can perform an evasive maneu-

ver, which can be either arbitrary or optimally adjusted against the incoming interceptor. It

is possible to develop an optimal evasion strategy using optimal control theory tools, however

it requires information on future pursuer’s behavior, i.e. it’s guidance law. A case study

where such a problem was formulated as a one-sided optimal control problem against a PN

guided interceptor was presented in Refs. 6–8. In these works some simplifying assumptions

were applied, such as two dimensional analysis and constant pursuer and evader speeds with

bounded maneuverabilities. A non-linear engagement dynamics along with assumptions on

first order pursuer dynamics was considered for problem formulation in Ref. 6. A numerical

solution was presented over a set of various engagement’s initial conditions. In Ref. 7 a

linearization around the collision course was made assuming ideal pursuer dynamics. This

study was extended in Ref. 8 to a non-linear model. The resulting optimal evasion strate-

gies obtained in the above works were found to have a bang-bang structure, i.e. applying

maximum available acceleration normal to the line-of-sight for a given period of time.

Continued development of sophisticated interceptor missiles having a large maneuver

capability while employing advanced guidance laws render the application of evasive maneu-

vers insufficient. To increase the probability of survival the target aircraft may also deploy a

defender missile to intercept an incoming threat. Such a multi-agent scenario is denoted as

target-missile-defender engagement and it may be treated for example by using either differ-

ential games or optimal theory tools. In Ref. 9 such a scenario was presented as a two team
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three person dynamic game - the Lady, the Bandit and the Bodyguard. The bandit’s (i.e.

missile) objective is to capture the lady (i.e. target), while lady and her body-guard’s (i.e.

defender) objective is to prevent it. The body-guard is trying to intercept the bandit prior to

its arrival within the lady’s proximity. In a recent paper10 this game was reformulated as a

target-missile-defender problem. Analytic terms were derived for the ideal dynamics case and

the solution provided the cooperative strategies for the aircraft and defending missile, as well

as the optimal combined pursuit-evasion strategy for the attacking missile. Another recent

work,11 performed in the first year of this research, investigated the target-missile-defender

interception problem for a case where the target and its defender share noisy measurements

of the attacking missile. A nonlinear adaptation of a multiple model adaptive estimator

was used in order to identify the guidance law and the guidance parameters of the incoming

homing missile. A matched defender’s missile guidance law was optimized to the identified

homing missile guidance law and the target’s guidance law was set to minimize the control

effort of the defender.

In a recent work,12 performed during the second year of this research, the target-missile-

defender engagement, where the missile is driven by a linear guidance law such as PN, APN,

and OGL was analyzed and cooperative pursuit and evasion strategies for the defender and

the target were derived. The derivation was based on arbitrary-order linear adversaries

dynamics and perfect information. The optimal noncooperative one-on-one evasion strate-

gies from a missile employing a linear guidance strategy were also analytically derived. It

was shown that a hit-to-kill performance is achievable due to cooperation, even when the

defending missile has a considerable maneuverability disadvantage over the interceptor.

Another implementation of the cooperation concept between the target and the defender

in target-missile-defender engagement was presented in Ref. 13 by using the line-of-sight

(LOS) guidance scheme. In this work (performed during the first year of this research) LOS

guidance kinematics with a maneuvering launch platform (defended aircraft) was derived

and investigated. A cooperative guidance law was proposed for the defended aircraft based

on the kinematic results to maximize the attacker-to-defender lateral acceleration ratio.

The proposed cooperative guidance scheme was studied analytically and via simulations for

various attack geometries showing better relative control effort performance.

In a recent work14 (performed during the second and third years of this research, and

presented also in this year’s interim report) an analysis of target-missile-defender engagement

was carried out where the defender employs proportional navigation and LOS guidance

against proportional navigation and pure pursuit missile strategies, while the target was

assumed to follow a non-maneuvering flight. Closed form expressions for lateral acceleration

ratios and capture zones were presented as well as an analytic expression for attacking missile

initial position and launch angles for a successful evasion from the defender.
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In the final stage of this research, presented next, we investigated the effect of cooperation

on the target-missile-defender engagement. We consider three approaches for cooperative

defense of an aircraft from a homing missile, using a defender missile. First, we consider a

case where the target and the defender are able to maintain a steady communication link

allowing two-way cooperation. In such a formulation, full cooperation is available between

the target and the defender. In the second case we assume that only one-way communication

is available to the defender and it is unaware of the target (aircraft) actions, i.e. the defender

transmits the required data to the target and acts independently. For this case a cooperative

strategy is derived for the target to aid a defender which is employing a classical one-on-one

guidance law to hit the attacking missile. For the third case one-way communication is

assumed for the target which shares its evasive maneuver with the defender. Thus, we derive

a cooperative pursuit strategy for the defender while the target performs an arbitrary evasive

maneuver, that is known to the defender. We assume perfect information in all three cases

except described information sharing limitations and the fact that the missile is unaware of

the existence of the defender. All cases are based on linearized kinematics, and adversaries

are assumed to have arbitrary order linear dynamics.

The remainder of this report is organized as follows. In the next section the target-

missile-defender engagement is formulated and a respective mathematical model is provided.

Then, a generalized form of linear guidance laws is presented including review of classical

special cases of PN, APN, and OGL. Next, the cooperative pursuit and evasion strategies are

derived for the defender and the target. This is followed by the derivation of a cooperative

strategy for a target with independently guided defender. Derivation of cooperative defender

strategy with independently evading target is presented next. Then, a simulation analysis

is presented, followed by concluding remarks.

II. Problem Formulation

We consider an engagement scenario consisting of three entities: an attacking missile

(M), an evading aircraft (T) and a defender missile (D). A defender missile is launched by

evading aircraft in order to intercept the incoming threat. The attacking missile is unaware

of the defender and employs a known linear one-on-one guidance law to catch the target.

For derivation purposes the missile-target-defender scenario is assumed to take place in

a plane. Three entities form two collision triangles. First, between the target aircraft and

the attacking missile and second between the defender missile and the attacking missile.

We assume that the engagement occurs in the endgame phase, where deviations from the

respective collision triangles are small and therefore the linearization along the initial lines

of sight (LOS0) is justified. Adversaries speeds are assumed to remain constant during the
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endgame. In addition, for simplicity, we assume that the defender is launched from the

targeted aircraft and therefore we can unite the initial line of sights of missile-target and

defender-missile pairs.

A schematic view of the planar end-game engagement geometry is shown in Fig. 1. The

X axis is aligned with the initial line of sight (LOS0) used for the linearization and Y

is perpendicular to it. The range between the missile and target is denoted rMT , while

that between the defender missile and the attacking one is denoted rMD. We denote yMT

and yMD as the target-missile and missile-defender relative displacements normal to LOS0,

respectively. The missile’s, target’s, and defender’s accelerations perpendicular to LOS0 are

denoted by aM , aT , and aD, respectively.

Y

aM

λMT

rMT

yMD

M

XLOS0

aT

T

yMT

λMD
D

aDrMD

Figure 1. Target-missile-defender engagement geometry.

A. Equations of Motion

We assume that during the endgame adversaries dynamics can be represented by arbitrary

order linear equations

ẋi = Aixi + Biui ; i = {M,T,D} (1)

ai = Cixi + diui ; i = {M,T,D} (2)
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where xi is the state vector of an agent’s internal state variables with dim(xi) = ni and ui is

its controller. The first term on the right-hand side of Eq. (2) is the part of the acceleration

with dynamics and we denote it as aiS (i.e. aiS = Cixi). For example, if the missile has

ideal dynamics (aiS = 0) then the direct lift is obtained immediately, i.e. ai = diui therefore

satisfying Ai = Bi = Ci = 0. On the other hand, a missile with first order strictly proper

dynamics with time constant τi is represented by Ai = −1/τi, Bi = 1/τi, Ci = 1 and di = 0.

The state vector of the linearized interception problem is therefore defined as

x =
[
yMT ẏMT xTM xTT yMD ẏMD xTD

]T
(3)

Defining the state vector of the linearized missile-target engagement as

xMT =
[
yMT ẏMT xTM xTT

]T
(4)

and that of the missile-defender as

xMD =
[
yMD ẏMD xTD

]T
(5)

we can rewrite it in a short form

x =
[
xTMT xTMD

]T
(6)

and dim(x) = nM + nT + nD + 4.

The states x1 and xnM+nT+3 are the differences between the target and missile positions

and between the missile and defender positions normal to the initial line of sight. x2 and

xnM+nT+4 are therefore the relative respective lateral speeds, and their derivatives are the

relative lateral accelerations of missile-target and missile-defender duos. Thus, the equations

of motion (EOM) which represent the engagement’s kinematics and dynamics can be written

as

ẋ =





ẋ1 = x2

ẋ2 = aT − aM
ẋM = AMxM + BMuM

ẋT = ATxT + BTuT

ẋnM+nT+3 = xnM+nT+4

ẋnM+nT+4 = aM − aD
ẋD = ADxD + BDuD

(7)
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These equations can be written in vector form as

ẋ = Ax+ B[uT uD]T + CuM (8)

where

A =


 AMT [0]

A21 AMD


 , B =


 BMT [0]

[0] BMD


 , C =


 CMT

CMD


 (9)

and

AMT =




0 1 [0] [0]

0 0 −CM CT

[0] [0] AM [0]

[0] [0] [0] AT



, BMT =




0

dT

[0]

BT



, CMT =




0

−dM
BM

[0]




(10)

A21 =




[0] [0] [0]

[0] CM [0]

[0] [0] [0]


 ,AMD =




0 1 [0]

0 0 −CD

[0] [0] AD


 ,BMD =




0

−dD
BD


 ,CMD =




0

dM

[0]




(11)

with [0] denoting a matrix of zeros with appropriate dimensions.

B. Timeline

The initial range between the attacking missile and the target is rMT (0). Similarly, between

the attacking missile and the defender it is rMD(0). Under the linearization assumption

around initial collision triangle, closing speeds of missile-target VCMT
and missile-defender

VCMD
are assumed to be constant. Thus, the interception time is fixed and can be approxi-

mated by

tfMT
= r

MT
(0)/VCMT

(12)

and similarly

tfMD
= r

MD
(0)/VCMD

(13)

We define ∆t as the time difference between interceptions

∆t = tfMT
− tfMD

(14)

To fulfil its task the defending missile has to reach the attacking missile prior to the missile

reaching the target. Thus, we require that the missile-defender engagement terminates prior

to that of missile-target, i.e. ∆t > 0 (tfMD < tfMT ).
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We define the times-to-go of the missile-target (tgoMT
) and missile-defender (tgoMD

) en-

gagements as follows

tgoMT
= tfMT

− t
tgoMD

= tfMD
− t

(15)

In the scope of our work we are interested in the part of the engagement until the termination

of the defender. Therefore, we denote the time-to-go of the engagement as

tgo = tgoMD
(16)

Using the time-to-go definition above and Eq. (14) we can obtain

tgoMT
= tgo + ∆t (17)

C. Missile Guidance Law

A considerable effort was made over the years in development of various guidance laws. As-

sumptions as perfect information, linear kinematics, and unbounded controls were generally

used for the derivations. This common practice resulted in a wide variety of guidance laws

which all have the same linear form as a function of missile-target engagement state variables

and possibly the target’s control

uM = K(tgoMT
)xMT +Ku(tgoMT

)uT (18)

where

K (tgoMT
) =

[
K1 K2 KM KT

]
(19)

Among the family of linear guidance laws are the well-known classical guidance laws of PN,

APN, and OGL. These guidance laws are more widely known in the following form1

uM = N
′

j

Zj
t2goMT

; j = {PN,APN,OGL} (20)

where Zj is the zerro-effort-miss distance (ZEM) associated with each guidance law. Zero-

effort-miss is defined based on the homogeneous solution of the linear dynamics model of a

given engagement. In general it represents the miss distance if from the current time and

until the end of the engagement no further acceleration commands are issued by the pursuer,

and the target follows an assumed maneuvering model. For the PN, APN, and OGL it is
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given by

ZPN = yMT + ẏMT tgoMT
(21)

ZAPN = ZPN + aT t
2
goMT

/2 (22)

ZOGL = ZAPN − aMτ 2Mψ(tgoMT
/τM) (23)

where τM is the missile’s acceleration dynamics time constant and

ψ(ξ) = exp(−ξ) + ξ − 1 (24)

N
′

is the respective effective navigation gain, where

N
′

PN = 3 (25)

N
′

APN = 3 (26)

N
′

OGL =
6θ2MTψ(θMT )

3 + 6θMT − 6θ2MT + 2θ3MT − 3e−2θMT − 12θMT e−θMT
(27)

and θMT is the normalized time-to-go in the missile-target engagement

θMT = tgoMT
/τM (28)

Because linear guidance laws are widely used in modern interceptors and therefore are

most likely to be encountered, we assume in our further derivations that the attacking missile

employs such a linear guidance strategy.

III. Two-Way Cooperative Pursuit Strategies

We first consider the general case where the target and the defender are acting as a team,

with the common goal of intercepting the incoming missile by the defender. For this purpose

two-way communication must be established between the target and the defender to allow

telemetric data sharing that is needed for cooperative action. For example, an unmanned

aerial vehicle (UAV) may fire a defender missile as countermeasure against an interceptor

missile. We assume that interceptor missile guidance law is identified, i.e. its behavior and

reaction to maneuvers issued by the UAV are known. Thus, the UAV may transmit it’s

future maneuvering sequence to the defender to allow it to predict the intercepting point

with the missile and head towards it. The resulting upcoming defender’s maneuver is then

transmitted back to the UAV and it may issue a correction command in order to assist the

defender. The UAV will actually act like a bait luring in the missile, while the defender
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will head towards the predicted intercept point. As a result, the missile will be intercepted

with minimum target’s and defender’s control efforts. In this section we derive such optimal

cooperative pursuit strategy for the defender and for the target against a homing missile.

The underlying assumptions are that the defender and the target share perfect information

on their current states and on the controls they are going to issue. It is also assumed

that the missile’s guidance strategy is known to the target and the defender, as it may be

identified using a technique such as that proposed in the first year of the research.11 For

the reasons presented in the previous section we also assume that the missile is guided by a

linear guidance strategy.

A. Cooperative Pursuit Dynamics

The linearized EOM of missile-target-defender engagement was presented in Eq. (8). By

substituting the missile guidance law from Eq. (18) into Eq. (8) we obtain the EOM of the

cooperative, two controllers problem

ẋ = APE(tgo,∆t)x+ BTPEuT + BDPEuD (29)

where

APE(tgo,∆t) =


 AMTPE(tgo + ∆t) [0]

A21PE(tgo,∆t) AMD


 (30)

and

AMTPE(tgo + ∆t) =




0 1 [0] [0]

−dMK1 −dMK2 −(CM + dMKM) CT − dMKT

BMK1 BMK2 AM + BMKM BMKT

[0] [0] [0] AT




(31)

A21PE(tgo,∆t) =




0 0 [0] [0]

dMK1 dMK2 CM + dMKM dMKT

0 0 [0] [0]


 (32)

BTPE =


 BMT + CMTKuT

CMDKuT


 BDPE =


 [0](2+nM+nT )×1

BMD


 (33)

with matrixes AMD given in Eq. (11) and BMT with BMD in Eq. (10) and Eq. (11)

accordingly.

15 of 38

 
Distribution A:  Approved for public release; distribution is unlimited.



B. Cooperative Pursuit Problem Statement

The main objective of the target-defender team is to intercept the attacking missile by the

defender prior to its arrival to target, i.e. minimize the miss distance of missile-defender

(|yMD(tfMD
)|). Yet, a reasonable control effort is sought from the target and the defender.

Thus, we pose the optimal cooperative pursuit problem as the minimization of the following

cost function

J =
1

2
αy2MD(tfMD

) +
1

2

∫ tfMD

0

u2D + βu2T dt (34)

subject to the EOM of Eq. (29). Where α and β are non-negative weights.

C. Order Reduction

In order to simplify the solution and to reduce the problem’s order we use a transformation

from Ref. 15 (denoted by some as terminal projection) and define a new variable

ZMD(t) = DΦ(tfMD
, t)x(t) (35)

where D is a constant vector

D =
[

0 0 [0]1×nM [0]1×nT 1 0 [0]1×nD

]
(36)

and Φ(tfMD
, t) is a transition matrix associated with Eq. (29), satisfying the fundamental

properties of a transition matrix as follows

Remark 1. Given a linear system with dynamics matrix A(t), the fundamental properties

of associated transition matrix Φ(tf , t) are

Φ̇(tf , t) = −Φ(tf , t)A(t)

Φ(tf , tf ) = I
(37)

The general form of Φ(tfMD
, t) for our problem is

Φ(tfMD
, t) = Φ(tgo) =




φ11 φ12 φ1M φ1T φ15 φ16 φ1D

φ21 φ22 φ2M φ2T φ25 φ26 φ2D

φ31 φ32 φ3M φ3T φ35 φ36 φ3D

φ41 φ42 φ4M φ4T φ45 φ46 φ4D

φ51 φ52 φ5M φ5T φ55 φ56 φ5D

φ61 φ62 φ6M φ6T φ65 φ66 φ6D

φ71 φ72 φ7M φ7T φ75 φ76 φ7D




(38)
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Using the definition of D and Φ(tfMD
, t) from Eq. (36) and Eq. (38) we can rewrite ZMD as

follows

ZMD(t) = [φ51 φ52 φ5M φ5T φ55 φ56 φ5D]x(t) (39)

The physical meaning of the new state variable ZMD, or zero-effort-miss (ZEM), is being the

miss-distance that a defender would achieve if from the current time and onwards not the

defender nor the target will apply any control and the missile will continue on it’s course

using assumed linear pursuit strategy.

To find out the dynamics of ZMD we differentiate it with respect to time and use transition

matrix properties from Eq. (37). We obtain ZMD EOM as

ŻMD = B̃T (tfMD
, t)uT + B̃D(tfMD

, t)uD (40)

where

B̃T (tfMD
, t) = DΦ(tfMD

, t)BTPE = φ52 (dT − dMKuT ) + φ5MBMKuT + φ5TBT + φ56dMKuT

B̃D(tfMD
, t) = DΦ(tfMD

, t)BDPE = −φ56dD + φ5DBD

(41)

We notice that the acquired ZEM dynamics of Eq. (40) is dependent only on defender’s and

target’s controllers uD and uT respectively.

We can now reformulate the optimization problem in terms of the new ZEM variable.

Since ZMD(tfMD
) = yMD(tfMD

) the cost function of Eq. (34) can be rewritten as

J =
1

2
αZ2

MD(tfMD
) +

1

2

∫ tfMD

0

u2D + βu2T dt (42)

and the equivalent reduced-order problem is to minimize the cost function of Eq. (42) subject

to the scalar EOM of Eq. (40).

D. Solution

The Hamiltonian of the reduced-order problem is

H =
1

2

(
u2D + βu2T

)
+ λZ

(
B̃TuT + B̃DuD

)
(43)

The adjoint equation and transversality condition are





λ̇ZMD
= − ∂H

∂ZMD
= 0

λZMD
(tfMD

) = αZMD(tfMD
)

(44)
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The solution of the adjoint equation of Eq. (44) is immediate and it is

λZMD
(t) = αZMD(tfMD

) (45)

The optimal cooperative pursuit strategies of the defender and the target minimize the

Hamiltonian given in Eq. (43) and thus satisfy

u∗T = arguT minH

u∗D = arguD minH
(46)

Now, by differentiating the Hamiltonian with respect to each respective controller and equat-

ing the result to zero we obtain the open loop optimal controllers for target and defender

∂H
∂uT

= βuT + λZMD
B̃T = 0

∂H
∂uD

= uD + λZMD
B̃D = 0

(47)

and using the Lagrange multiplier λZMD
(t) from Eq. (45) we finaly obtain

u∗T = −α
β
ZMD(tfMD

)B̃T

u∗D = −αZMD(tfMD
)B̃D

(48)

Then, in order to compute ZMD(tfMD
) we substitute optimal open loop controllers from

Eq. (48) into zero-effort-miss EOM from Eq. (40) and integrate it from current time t to

tfMD

ŻMD(t) = −α
(

1

β
B̃2
T + B̃2

D

)
ZMD(tfMD

) (49)

ZMD(tfMD
) = ZMD(t) +

∫ tfMD
t

ŻMD(ξ) dξ =

= ZMD(t)− αZMD(tfMD
)
∫ tfMD
t

1
β
B̃2
T + B̃2

D dξ
(50)

We finally obtain ZMD(tfMD
) as

ZMD(tfMD
) = ΦZMD

(tfMD
, t)ZMD(t) (51)

where

ΦZMD
(tfMD

, t) =
1

1 + α
∫ tfMD
t

1
β
B̃2
T (tfMD

, ξ) + B̃2
D(tfMD

, ξ) dξ
(52)
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Substituting ZMD(tfMD
) from Eq. (51) into open loop controllers from Eq. (48) we obtain

optimal two-way cooperative pursuit strategies for defender and target

u∗T (t) = −N ′T (t)ZMD(t)/t2go

u∗D(t) = −N ′D(t)ZMD(t)/t2go
(53)

where N ′T (t) and N ′D(t) are navigation gains

N ′T (t) = α
β
B̃T (tfMD

, t)ΦZMD
(tfMD

, t) · t2go
N ′D(t) = αB̃D(tfMD

, t)ΦZMD
(tfMD

, t) · t2go
(54)

In order to complete the solution and implement the derived optimal cooperative strate-

gies for the defender and the target from Eq. (53) we need to compute the transition matrix

Φ(tfMD
, t). Fortunately, the terminal projection method we used allows us to reduce these

computations only to some necessary elements of the transition matrix, which in our case

are φ51, φ52, φ5M , φ5T , φ55, φ56 and φ5D. Now, using D from Eq. (36) and the relation

from Eq. (37) we can find the differential equation with respect to time-to-go (tgo) of these

elements

D
dΦ

dtgo
= −D

dΦ

dt
= DΦ(tgo)APE(tgo + ∆t) (55)

with initial condition from Eq. (37) as

Φ(tgo = 0) = I (56)

Substituting D and APE(tgo + ∆t) we obtain





dφ51

dtgo
= −dMK1φ52 +K1φ5MBM + dMK1φ56

dφ52

dtgo
= φ51 − dMK2φ52 +K2φ5MBM + dMK2φ56

dφ5M
dtgo

= [−CM − dMKM ]φ52 + φ5M [AM + BMKM ] + φ56(CM + dMKM)

dφ5T
dtgo

= [CT − dMKT ]φ52 + φ5MBMKT + φ5TAT + dMKTφ56

dφ55

dtgo
= 0

dφ56

dtgo
= φ55

dφ5D
dtgo

= −φ56CD + φ5DAD

φ51(0) = 0

φ52(0) = 0

φ5M(0) = [0]

φ5T (0) = [0]

φ55(0) = 1

φ56(0) = 0

φ5D(0) = [0]

(57)

Once the endgame phase of the engagement is entered Eq. (57) can be solved numerically as

a function of time-to-go and cooperative guidance laws can be implemented. The solution
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of φ55 and φ56 is immediate and it is

φ55(tgo) = 1

φ55(tgo) = tgo
(58)

And if the missile is implementing a PN, APN or OGL guidance, where the relation K2 =

(tgo + ∆t) ·K1 holds, it can be shown that

φ52 = φ51 · (tgo + ∆t) (59)

E. Special Cases

The obtained cooperative strategies from Eq. (53) are functions of the weights α and β.

These weights represent the relative penalty on a miss distance (α) and the relative penalty

on the target’s control effort (β). Note that in the cost function of Eq. (42) the penalty on

the defender’s control effort is 1. Thus, in order to achieve perfect interception of the missile

by the defender we have to vastly increase the weight on the miss distance α compared to

the weights on the control efforts β and 1 i.e. we require α → ∞. Therefore, the optimal

controllers remain as in Eq. (53) and the respective navigation gains are obtained by inducing

α→∞ on Eq. (54)

N ′T,α→∞(t) =
B̃T (tfMD

,t)

β
∫ tfMD
t

1
β
B̃2
T (tfMD

,ξ)+B̃2
D(tfMD

,ξ) dξ
· t2go

N ′D,α→∞(t) =
B̃D(tfMD

,t)∫ tfMD
t

1
β
B̃2
T (tfMD

,ξ)+B̃2
D(tfMD

,ξ) dξ
· t2go

(60)

In case where in addition to perfect interception the target has limited or no maneuvering

capability, e.g. passenger aircraft, the weight on target’s control effort must be increased

along with the weight on the miss distance. Thus, the corresponding navigation gains are

obtained by inducing infinite weight on target’s control effort, i.e. β → ∞, together with

infinite weight on the miss distance, i.e. α→∞,

N ′T,α→∞,β→∞(t) = 0

N ′D,α→∞,β→∞(t) =
B̃D(tfMD

,t)∫ tfMD
t B̃2

D(tfMD
,ξ) dξ
· t2go

(61)

For the case where perfect interception is required from a non-maneuvering defender we

induce an infinite weight on defender’s control effort in addition to the weight on the miss

20 of 38

 
Distribution A:  Approved for public release; distribution is unlimited.



distance, i.e. β → 0 and α→∞. And we obtain the navigation gains as follows,

N ′T,α→∞,β→0(t) =
B̃T (tfMD

,t)∫ tfMD
t B̃2

T (tfMD
,ξ) dξ
· t2go

N ′D,α→∞,β→0(t) = 0
(62)

IV. Cooperative Target Strategy with Independent Defender

In the previous section we derived optimal strategies for a general case where two-way in-

formation sharing allowed the target and the defender to act cooperatively as a team against

a homing missile. However, such a two-way communication requires additional hardware

installed on the defender, and may be often unavailable at hand. In this section we con-

sider a case where a different cooperation scheme is employed, assuming that only one-way

information sharing is possible. For example, the defender can be driven independently us-

ing an existing one-on-one strategy while transmitting the data on its future maneuver to

the target. Using the information on defender’s strategy, along with the knowledge on the

strategy of the missile the target can predict the behavior of the defender and bring the

missile to interception with the defender. As a realistic example of such a scenario we can

think of an aircraft equipped with already existing missiles where a guidance law such as

PN is implemented. Thus, in the current section we derive a one-way cooperative support

strategy for the target to aid the defender hit the missile. We assume that the defender

missile is driven by a one-on-one linear guidance law of the form described in Eq. (18) (such

as PN). The underlying assumption is that the missile’s and defender’s guidance strategies

are known to the target. It is logical to assume a known defender’s strategy as it is fired

from the target, while missile’s guidance law may be identified using a technique such as

that proposed in the first year of the research.11

A. Engagement Dynamics

We assume that both missile and defender employ linear guidance strategies. The corre-

sponding notation for the missile’s strategy was shown in Eq. (18). Thus, we can write the

defender’s guidance law as follows

uD = KD(tgoMD
)[xTMD x

T
M ]T +KuTD

(tgoMD
)uM (63)

where

KD (tgoMD
) =

[
K1D K2D KMD

KTD

]
(64)
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By substituting missile’s and defender’s guidance laws given in Eq. (18) and Eq. (63) into

Eq. (8) we obtain the EOM of the cooperative one-way single controller evasion problem:

ẋ = AE(tgo,∆t)x+ BEuT (65)

where

AE(tgo,∆t) =


 AMTPE(tgo + ∆t) [0]

A21E(tgo,∆t) AMDE(tgo)


 , BE =


 BMTE(tgo)

BMDE(tgo,∆t)


 (66)

A21E(tgo,∆t) =




0 0 [0] [0]

GK1 GK2 CM +GKM − dDKTD GKT

HK1 HK2 (HKM + BDKTD) HKT


 (67)

where

G = (dM −KuTD
dD); H = KuTD

BD (68)

and

AMDE(tgo) =




0 1 0

−dDK1D −dDK2D −(CD + dDKMD
)

BDK1D BDK2D AD + BDKMD


 (69)

BMTE =




0

dT −KuT dM

BMKuT

BT




BMDE =




0

−dDKuTKuTD
+ dMKuT

BDKuTKuTD


 (70)

B. Problem Statement

To achieve an interception of the missile by the defender the primary objective of the target

during the missile-defender engagement is to minimize the miss distance between missile

and defender (|yMD(tfMD
)|) and yet apply a reasonable maneuver. The cost function that

describes the above objectives is therefore

J1 =
1

2
αy2MD(tfMD

) +
1

2

∫ tfMD

0

u2T dt (71)

subject to the EOM of Eq. (65).

However, in the above cost function formulation there is no penalty set for the control

effort of the defender whereas its linear guidance law was derived assuming unbounded
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control. As a consequence, the solution of the problem will provide us with a target strategy

that answers the objectives defined by the cost function, but at the same time it may result

in excessive defender’s acceleration. In a realistic scenario where defender’s acceleration is

limited by a finite value it will saturate causing a miss distance. Consequently, the target

must take into account also the minimization of the defender’s control effort. Thus, the

respective cost function will be as follows

J2 =
1

2
αy2MD(tfMD

) +
1

2

∫ tfMD

0

u2D + βu2T dt (72)

where α is a non-negative weight representing a penalty on the miss distance and β is a non-

negative weight representing a relative penalty between the control efforts of the defender

and the target.

Apparently, the second formulation of Eq. (72) represents a more general case of the

first one of Eq. (71). Thus, we continue to focus on a solution of the second formulation. In

addition, since all linear guidance laws that may be implemented by the defender are designed

for interception (i.e. minimize the missile-defender miss distance), once the target begins to

actively help the defender (i.e. by reducing defenders control effort) a hit-to-kill performance

will be guarantied. Thus, the weight on the miss distance for the second formulation may

not be necessary (i.e. α = 0), as will be shown in the simulation section.

C. Solution

Using the defender’s controller from Eq. (63) and substituting a missile controller from

Eq. (18) we can reformulate the cost function given in Eq. (72) to the following linear

quadratic form:

J2 =
1

2
xT (tfMD

)Qfx(tfMD
) +

1

2

∫ tfMD

0

xTQ(tgo)x+ 2uTLx+ uTTRuT dt (73)

where

Qf =




[0](2+nM+nT )×(2+nM+nT ) [0](2+nM+nT )×1 [0](2+nM+nT )×(1+nD)

[0]1×(2+nM+nT )
α [0]1×(1+nD)

[0](1+nD)×(2+nM+nT )
[0](1+nD)×1 [0](1+nD)×(1+nD)


 (74)

Q = VTV; L = KuTD
KuTV; R = (KuTD

KuT )2 + β (75)

and

V =
[
KuTD

K1 KuTD
K2 KuTD

KM + KTD KuTD
KT K1D K2D KMD

]
(76)
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The Hamiltonian of the problem is

H =
1

2
xTQ(tgo)x + uTLx +

1

2
uTTRuT + λTAEx + λTBEuT (77)

The adjoint equation and transversality condition are





λ̇ = −
(
∂H
∂x

)T
= −Q(tgo)x− LTuT −AE

Tλ(t)

λ(tfMD
) = Qfx(tfMD

)
(78)

The optimal cooperative target strategy minimizes the Hamiltonian and thus satisfies

u∗T = arguT minH = arguT {
∂H
∂uT

= LxRuT + BT
Eλ = 0} (79)

u∗T = −R−1
(
BT
Eλ(t) + Lx∗

)
(80)

where x∗ is the optimal trajectory.

The solution of the adjoint equation given in Eq. (78) with implemented optimal controller

from Eq. (79) is given by

λ(t) = P (t)x(t) (81)

where P (t) is a symmetric matrix of the following form

P (t) =




p11 p12 p1M p1T p15 p16 p1D

p12 p22 p2M p2T p25 p26 p2D

pT1M pT2M p3M p3T p35 p36 p3D

pT1T pT2T pT3T p4T p45 p46 p4D

p15 p25 pT35 pT45 p55 p56 p5D

p16 p26 pT36 pT46 p56 p66 p6D

pT1D pT2D pT3D pT4D pT5D pT6D p7D




(82)

satisfying the following differential matrix Riccati equation





Ṗ = −
(
PAE + AT

EP−PBER
−1BT

EP− 2PBER
−1 − LTR−1L + Q

)

P(tfMD
) = Qf

(83)

And the closed loop optimal evasion strategy is therefore

u∗T (t) = −R−1
(
BT
EP (t) + L(t)

)
x(t) (84)
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We can now substitute R , BE and P(t) from Eq. (75), Eq. (70) and Eq. (82) respectively

and obtain

u∗T (t) = − K∗E(t)

(KuTD
KuT )2 + β

x(t) (85)

where

K∗E(t) =




dTp12 + BT
TpT1T +K2

uTD
KuTK1

dTp22 + BT
TpT2T +K2

uTD
KuTK2

dTp2M + BT
TpT3T +K2

uTD
KuTKM +KuTD

KuTKTD

dTp2T + BT
Tp4T +K2

uTD
KuTKT

dTp25 + BT
Tp45 +KuTD

KuTK1D

dTp26 + BT
Tp46 +KuTD

KuTK2D

dTp2D + BT
Tp4D +KuTD

KuTKMD




T

(86)

In order to implement this strategy the matrix P shall be calculated prior to the endgame

phase of the engagement. Since we can not obtain a closed form solution for P it will be

calculated numerically.

V. Cooperative Defender Strategy with Independent Target

In the previous section we analyzed a target-defender team actions under the constraint of

independently guided defender and presented a corresponding one-way cooperation scheme.

Now, we turn our attention to the second one-way cooperation scheme, where the information

is transferred from the target to the defender. We assume that the target may perform any

arbitrary maneuver and transmits the data regarding its chosen strategy to the defender.

For example, an aircraft pilot may fire a defender on the incoming missile and perform an

independent evasive maneuver. Based on the oncoming maneuvering sequence received from

the target, together with the knowledge of missile’s guidance law, the defender is able to

predict the missile’s behavior and head towards the interception point. Thus, an appropriate

one-way cooperative pursuit strategy is required for the defender. As in the previous section

we apply an assumption that the attacking missile uses a known linear guidance law of

the form given in Eq. (18). We also assume that the target performs a known arbitrary

maneuvering strategy. For example, since the missile’s guidance law is known it is natural

for the target to employ an optimal one-on-one evasive maneuver. The corresponding one-

on-one evasion strategies assuming bounded target control and a pursuer implementing a

linear guidance were derived in the second year of the research12 and have the following form

u∗TE = umaxT sign(sMT ) sign(ZMT ) (87)
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where sMT is the appropriate switching function and ZMT is the first component of the

homogeneous solution of missile-target engagement.

A. Pursuit Dynamics

The missile-target-defender engagement equations of motion remain as given in Eq. (8).

Following the assumption that the missile uses a linear guidance strategy we substitute

Eq. (18) into Eq. (8) to obtain the EOM of pursuit-evasion problem as it was presented in

Eq. (30). We also assume that the target performs a known evasive maneuver, such as that

given in Eq. (87). Thus, the EOM are

ẋ = APE(tgo,∆t)x+ BTPEu
∗
TE

+ BDPEuD (88)

B. Pursuit Problem Statement

The defender’s objective during the engagement is to ensure the safety of the target by

intercepting the homing missile. This can be achieved by minimizing the miss distance

(|yMD(tfMD
)|), while not exceeding defender’s maneuvering capabilities. Thus, we pose the

cooperative pursuit problem as the minimization of the following cost function

J =
α

2
y2MD(tfMD

) +
1

2

∫ tfMD

0

u2D dt (89)

subject to EOM from Eq. (88) and with α being a non-negative weight which is a relative

penalty between the miss distance and the control effort.

C. Order Reduction

In order to simplify the solution and to reduce the problem’s order we again use the terminal

projection method and define a new variable

ZMDP (t) = DΦ(tfMD
, t)x(t) + D

∫ tfMD

t

Φ(tfMD
, ξ)BTPEu

∗
TE

(ξ) dξ (90)

where D is a constant vector given in Eq. (36) and Φ(tfMD
, t) is the transition matrix

associated with Eq. (88). Since in the current engagement formulation the dynamics matrix

is the same as in Eq. (29) the resulting transition matrix is identical to that given in Eq. (38)

and satisfies Eq. (37). The general form of Φ(tfMD
, t) for our problem was presented earlier

and is given in Eq. (38).

Using the definition of D and Φ(tfMD
, t) from Eq. (36) and Eq. (38), and BTPE from

26 of 38

 
Distribution A:  Approved for public release; distribution is unlimited.



Eq. (33) we can rewrite ZMD as follows

ZMDP (t) = [φ51 φ52 φ5M φ5T φ55 φ56 φ5D]x(t) +

∫ tfMD

t

(φ52dT + φ5TBT )u∗TE(ξ) dξ (91)

The physical meaning of the new state variable ZMD or zero-effort-miss (ZEM) is a miss-

distance that a defender would achieve if from the current time and onwards it won’t apply

any control and the target and missile will continue on their course using their assumed

pursuit and evasion strategies.

To find out the dynamics of ZMDP we again differentiate it with respect to time and use

Eq. (37). And we obtain ZMDP EOM as

ŻMDP = B̃D(tfMD
, t)uD (92)

where B̃D is given in Eq. (33). We notice that the acquired ZEM dynamics of Eq. (92) is

dependent only on defender’s controller uD, as the target is employing a pre-decided upon

maneuver.

We can now reformulate the optimization problem in terms of the ZEM variable. Since

ZMD(tfMD
) = yMD(tfMD

) the cost function of Eq. (89) can be rewritten as

J =
α

2
Z2
MDP

(tfMD
) +

1

2

∫ tfMD

0

u2D dt (93)

and the equivalent reduced-order problem is to minimize the cost function of Eq. (93) subject

to the EOM of Eq. (92).

D. Solution

The Hamiltonian of the reduced-order problem is

H =
1

2
u2D + λZMDP

B̃D(tfMD
, t)uD (94)

The adjoint equation and transversality condition are





λ̇ZMDP
= − ∂H

∂ZMDP

= 0

λZMDP
(tfMD

) = ZMDP (tfMD
)

(95)

Following the same steps as it was done in section III we obtain the optimal cooperative

pursuit strategy for the defender

u∗D(t) = −N ′DP (t)ZMDP (t)/t2go (96)
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where N ′DP (t) is the navigation gain satisfying

N ′DP (t) = αB̃D(tfMD
, t)ΦZMDP

(tfMD
, t) · t2go (97)

and

ΦZMDP
(tfMD

, t) =
1

1 + α
∫ tfMD
t

B̃2
P (tfMD

, ξ) dξ
(98)

For perfect interception we choose α→∞ as it was done in previous sections and obtain

the navigation gain

N ′DP ,α→∞(t) =
B̃D(tfMD

,t)∫ tfMD
t B̃2

P (tfMD
,ξ) dξ
· t2go (99)

VI. Simulation Analysis

In this section we investigate the performance of the derived cooperation schemes via

analysis of simulation results. Each of the three proposed cooperation schemes is discussed

separately and then compared. Such a comparison enables us to analyze the impact of coop-

eration between target and defender on the outcome of the engagement. For the simulations

we assume that missile, target, and defender have first order acceleration dynamics with

identical time constants of 0.1 seconds. The missile employs PN guidance and we assume

that this strategy is known to the adversaries. The duration of the missile-defender engage-

ment is 0.7 seconds, and the time difference ∆t between the terminal times of missile-target

and missile-defender engagements is 0.3 seconds.

A. Two-Way Cooperative Pursuit

In this subsection we examine the first and more general case where the target and the

defender act in full cooperation by means of two-way information sharing to intercept the

incoming missile. Once the endgame phase of the engagement has begun and the missile’s

guidance strategy was identified then the target and defender may switch to their respective

cooperative strategies. In order to implement the optimal two-way cooperative pursuit guid-

ance laws of Eq. (53) the relevant elements of the transition matrix must be computed by

solving the system of differential equations Eq. (57) (i.e. numerical solution). Next step in

the implementation is to assign penalty weights α and β according to desired performance or

other engagement constraints (i.e. acceleration limitations). In Fig. 2 we present the Pareto

Front of the problem as a function of weights α and β. Each point on the surface depicted

on the figure represents a simulation result in terms of miss distance yMD(tf ) and control

effort of the target (
∫
u2T dt) and the defender (

∫
u2D dt). When the target and the defender

both use optimal strategies the point representing the outcome of the engagement lies on
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the Pareto Front surface. It is therefore not possible to gain a better result, i.e. descend

bellow the Pareto Front by deviating from these optimal strategies. Thus, if for any reason a

different strategy is chosen by the target or the defender, the resulting outcome will be above

the surface. As expected, it can be observed that increasing the penalty on miss distance,

i.e. α → ∞, reduces yMD(tf ). However, at the same time for a given β the control efforts

of the target and the defender increase as they are required to perform harder to achieve

smaller miss. We also notice that by increasing the relative penalty on control effort β we

obtain reduced control effort for target and increased effort for the defender. For a given α,

increasing β will also cause the miss distance y2MD(tf ) to increase, since target tries less to

assist the defender.
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α = 19.31

α = 33.93

Figure 2. Cooperative Pursuit Pareto Front as a function of α and β.

The part of the Pareto Front for the limiting case where we want to assure interception

of the missile, i.e. α → ∞, is presented in Fig. 3. By decreasing β we place less penalty

on target’s maneuvering, thus allowing the target to more actively help the defender . As a

consequence the control effort required from the defender decreases. Actually, this limiting

case Pareto Front is a cross section of the general case Pareto Front surface shown in Fig. 2

at y2MD(tf ) = 0.
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Figure 3. Pareto Front for the limiting perfect interception case where α → ∞ as a function
of β.

The time evolution of navigational gains N ′T and N ′D for various weights β is plotted in

Fig. 4. Decreasing β raises the navigation gain of the target N ′T , since by decreasing the

penalty on the target maneuver, we are actually allowing an increase in the control; the same

is true about the defender’s navigation gain N ′D. The resulting optimal trajectories over a

set of weights β is plotted in Fig. 5. During the engagement cooperatively acting target and

defender cause ZMD to monotonically decrease until it’s nulled.

Note, an outcome of a scenario where the target and the defender both use existing

one-on-one strategies can be presented on Fig. 2 as a single point. For example, in a case

where the defender employs PN guidance and the target performs a constant maneuver an

interception is achieved. Therefore, the point will be on a plane corresponding to yMD(tf ) = 0

and we can refer to Fig. 3. In addition, the control effort of the target equals to some positive

value and that of the defender tends to a very large number (i.e.
∫
u2Tdt = 1035). Thus,

the corresponding point representing such an outcome is beyond the figure boundaries and

above the Pareto Front line. It is evident that using such a one-on-one strategies yields

worse performance than by cooperative actions.

B. Cooperative Target With Independent Defender

Now we turn our attention to the second guidance law derived for the target to coopera-

tively aid the defender intercept the missile. Recall that in this case we rely on a one-way

information sharing set from the defender to the target, i.e. the defender is independently

guided by some linear strategy and transmits this data to the target. This information is

then used by the target to bring the defender to collision with the missile. The respective
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Figure 4. Navigation gains evolution for two-way cooperation.
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Figure 5. ZMD evolution for perfect interception case.
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strategy is given in Eq. (85). We assume that the missile and the defender are guided using

PN guidance law with effective gain N ′ = 3 that is known to the target.

To implement the guidance law, the relative penalty weight on the miss distance α and

on the target control effort β must be assigned first. Next, the respective elements of matrix

P must be computed according to the solution of Eq. (83).

The simulation was set over the same engagement’s initial conditions as in the previous

case. The resulting Pareto Front is shown in Fig. 6. We present the results only for α = 0,

as identical results were obtained for other various values of α. Note, that for the current set

of initial conditions and due to unbounded control the defender manages to achieve a zero

miss distance even without the target’s assistance (i.e. uT = 0). Since the penalty on miss

distance does not affect the outcome and a perfect interception is achieved it is clear that the

target maneuvers only to reduce the control effort of the defender. In Fig. 6 we also depict

the cross section of the cooperative pursuit Pareto Front at y2MD(tf ) = 0 from Fig. 2, which

is also shown in Fig. 3. The control efforts required from the target and the defender when

using full cooperation are considerably smaller than in the present case; therefore, this cross

section appears as a point at the origin. Apparently, the obtained Pareto Front of the current

cooperation scheme is significantly above the Pareto Front of the two-way cooperation case,

since the strategies used by the target and the defender in the current scenario considerably

deviate from the optimal two-way cooperative pursuit strategies. Despite the fact that the

target’s strategy is optimal for the current scenario it does not exploit the full potential of

cooperation due to the constraint on the guidance law of the defender.

When the penalty on target’s control effort β is very large (greater than 1020), the target

does not perform any maneuver and it’s control effort equals zero. In this case, the defender

is acting alone in absence of aid from the target. As a consequence, the required defender

control effort is huge. Such an outcome is a result of PN guidance implemented on a defender

with non ideal dynamics. Once the penalty decreases, and the target is allowed to maneuver

it manages to significantly decrease the control effort required from the defender. However,

to improve the outcome and to further reduce the control effort of the defender the target

must considerably increase its own control effort. It is evident that there is a diminishing

return for target maneuvers. .

It is important to note that the main contribution of the one-way cooperation here is the

possibility to reduce the required control effort of the defender, since the interception of the

missile could have been achieved even without the target’s assistance. However, it is clearly

seen by comparing the results shown in Fig. 3 and Fig. 6, that a one-way cooperation scheme

requires a considerably more agile target. In order to be able to support the defender with

the preset one-on-one guidance law, the target and the defender must have much superior

maneuvering capabilities compared to the two-way cooperation case.
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Figure 6. Pareto Front for cooperative target with independent defender.

The guidance law derived for the current cooperation scheme, as shown in Eq. (85) has

a different structure than the general two-way cooperation case guidance strategy, as shown

in Eq. (53).The current controller is a function of time dependent gains vector multiplied

by the current state vector, whereas two-way cooperation controllers have a form of ZEM

multiplied by a navigational gain. Thus, there is no clear way to compare those gains and

therefore they are not shown here.

C. Cooperative Defender with Independent Target

In this subsection we analyze the performance of cooperatively acting defender with inde-

pendently evading target. The guidance law is given in Eq. (96). The underlying assumption

in the derivation of this strategy was the knowledge of missile’s guidance and target’s evad-

ing maneuver. For simulation purpose we assume that target performs a constant evasive

maneuver of 1.5g. Missile is assumed to employ proportional navigation with effective gain

N ′ = 3.

In order to implement this guidance strategy we need to calculate the relevant elements

of the transition matrix by solving the system of differential equations given in Eq. (57). For

the current scenario this calculation is similar to the one done in subsection A.

The Pareto Front for the current engagement is shown in Fig. 7. The figure represents two

optimization objectives of the problem, i.e. missile-defender miss distance and defender con-

trol effort. Since the target maneuvers independently, its control effort is constant and equals
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to
∫
u2Tdt ' 151[m2/sec], no matter what the missile and the defender do. Thus, if we look

at the general cooperative pursuit Pareto Front from Fig. 2, the Pareto Front of the current

problem will lay on a plane which corresponds to the cross section at
∫
u2Tdt ' 151[m2/sec]

as it is shown in Fig. 8. Similarly to the one-way cooperative defender case the current strat-

egy is an optimal solution under the constraint of a non-cooperative target, and therefore it

cannot achieve better results than of a general two-way cooperation unconstrained case. As

seen from the Fig. 8 the Pareto Front is indeed above the Pareto Front surface of a two-way

cooperation case. Note that in the current cooperation scheme formulation a scenario with

a non maneuvering target (i.e. uT = 0) actually represents a limiting case of the general

two-way cooperation with β →∞.

We can observe from Fig. 7 that increasing the penalty α on the miss distance forces

the defender to perform harder (its control effort increases) to achieve smaller miss. Further

increasing α to infinity (α → ∞) provides us with a limiting case of a perfect interception

of the missile by the defender.
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Figure 7. Pareto Front for cooperative defender with independent target.

Evidently, when the defender relies on the ongoing behavior of the target, perfect inter-

ception is achievable with a much larger effort than when they both communicate and share

their strategies with each other. However, in the previous cooperation scheme where the

target used the information on defender’s guidance law to support its pursuit a much larger

control effort was required from the target. Practically it can be concluded that aiding a

defender employing a preset guidance law with a support maneuver of the target is harder

since when the future evasion strategy of the target is known the defender just needs to head

towards a predicted intercept point.
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The navigation gain N ′DP is plotted in Fig. 9 for various values of α including the limiting

case where α → ∞. The resulting optimal trajectories are shown in Fig. 10. It is evident

that when the objective of the defender is perfect interception it manages to exploit the

information about target’s maneuver and anticipate the behavior of the missile to null the

miss distance.
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Figure 9. Navigation gain for cooperative defender with independent target.
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Figure 10. ZMDP
evolution during the engagement.

VII. Conclusions

In this report, that summarizes the work performed in the last stage of the three years

research effort, we analyzed an interception engagement in which a defending missile is

fired from an aircraft to intercept an incoming homing missile. Three different cooperation

schemes were presented and mathematically formulated. For each case optimal cooperative

guidance laws were derived, according to the constraints induced by cooperation limitations.

The first case implied two-way cooperation allowing full synergy between the target and

the defender. In this case no constraints were applied on their behavior which allowed us
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to derive cooperative pursuit strategies for the target and the defender. In the second case

we assumed that only one-way cooperation is available from the side of the target. As a

realization of such a scenario we considered an independently homing defender and a target

trying to lure in the missile. For this case the optimal one-way cooperative support strategy

was derived for the target to aid the defender intercept the missile. Third approach assumed

information sharing from the target to the defender, i.e. independently evading target, while

the objective of the defender was to exploit this information to intercept the missile. All three

guidance schemes were derived assuming arbitrary order linear dynamics of the adversaries,

perfect information under the constraints of respective information sharing schemes, and a

missile employing a known linear guidance strategy.

Performance of the proposed guidance laws was analyzed via simulation, using the notion

of Pareto fronts. As expected, it was shown that fully cooperative actions yield best perfor-

mance compared to one-way cooperation schemes and one-on-one strategies. Once two-way

communication cannot be established and full cooperation is not possible one player of the

target-defender team must act independently. It was shown that in such a case it is still possi-

ble to intercept a homing missile using an appropriate cooperation scheme. It was also shown

that different one-way cooperation schemes impose different maneuvering requirements on

the respective cooperatively acting players. Results have shown that cooperatively acting

defender is more effective than cooperatively acting target, since cooperative defender only

needs to turn towards predicted intercept point, while cooperative target has to take into

account missile reaction to its maneuver to bring the independent defender to interception

point.
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